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Abstract
We present a quantitative semiclassical treatment of the effects of bifurcations
on the spectral rigidity and the spectral form factor of a Hamiltonian quantum
system defined by two coupled quartic oscillators, which on the classical
level exhibits mixed phase space dynamics. We show that the signature of
a pitchfork bifurcation is two-fold: beside the known effect of an enhanced
periodic orbit contribution due to its peculiar h̄-dependence at the bifurcation,
we demonstrate that the orbit pair born at the bifurcation gives rise to distinct
deviations from universality slightly above the bifurcation. This requires a
semiclassical treatment beyond the so-called diagonal approximation. Our
semiclassical predictions for both the coarse-grained density of states and
the spectral rigidity, are in excellent agreement with corresponding quantum-
mechanical results.

PACS numbers: 03.65.Sq, 05.45.Mt

1. Introduction

A prominent approach to the quest of ‘quantum chaos’ involves spectral statistics to
characterize the energy-level fluctuations in quantum systems and their interpretation in
terms of the dynamics of the corresponding classical system. Classically integrable systems
possess uncorrelated energy levels, described by a Poisson distribution [1], while the levels
of classically chaotic quantum systems exhibit strong local repulsion. This behaviour is
conjectured to be the same as for the eigenvalues of ensembles of random matrices preserving
certain general symmetries [2]. Spectral statistics has been investigated, for both integrable
[3–5] and chaotic [6–8] systems, employing semiclassical (periodic orbit) approaches, which
provide the closest link between classical and quantum properties. For the purely chaotic
case, starting with [9], considerable progress has been made recently in understanding energy
level correlations semiclassically beyond the so-called diagonal approximation [7] by means
of classical correlations between (off-diagonal pairs) of periodic orbits [10].
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However, integrability and full chaoticity represent extreme situations which occur rather
exceptionally. The most realistic physical situation is that of a system which is neither
completely chaotic nor integrable, but whose phase space contains a mixture of stable orbits
surrounded by regular islands and chaotic regions. One main feature and structuring element
of classical mixed phase space dynamics is the occurrence of bifurcations of periodic orbits
upon variations of the energy or other parameters of the Hamiltonian. Moreover bifurcations
lead to noticeable effects in the spectral statistics, because in semiclassical trace formulae for
the density of states [11, 12], contributions from periodic orbits at a bifurcation exhibit an
enhanced weight, compared to that of isolated orbits. This has been demonstrated for the
generalized cat map in [13], where the semiclassical signature of a tangent bifurcation was
studied on the level of the diagonal approximation.

More generally, in [14, 15] a semiclassical approach was developed for the moments
of the level counting function in the presence of several competing generic bifurcations.
It was suggested that these moments diverge with a universal ‘twinkling exponent’ in the
semiclassical limit h̄ → 0.

In the present paper we investigate the role of pitchfork bifurcations on the spectral
statistics in Hamiltonian systems that are closer to a realistic physical situation than the maps
considered so far. We show that bifurcations of short orbits have a considerable effect on the
spectral rigidity and the spectral form factor, respectively, even in the almost chaotic case.
As a standard system with mixed classical dynamics, we choose the Hamiltonian of two
coupled quartic oscillators. Its relevant classical bifurcation characteristics are summarized
in section 2. In section 3 we present a detailed semiclassical analysis including a comparison
with quantum results for the (smoothed) density of states for different symmetry classes, as
a prerequisite for the treatment of spectral correlations in section 4. There we quantitatively
analyse deviations of the spectral rigidity from universality employing uniform approximations
to derive the semiclassical periodic orbit weights at the bifurcation. We show, in particular, that
pairs of orbits (with an action difference smaller than Planck’s constant h̄), born at a pitchfork
bifurcation, yield important non-diagonal contributions to the spectral form factor and rigidity.
The deviations from the quantum chaotic universality are found to be most significant after,
rather than at the bifurcation.

2. The quartic oscillator Hamiltonian

As a representative system we investigate the coupled quartic oscillator (QO) in two
dimensions. Its Hamiltonian reads

H(x, y, px, py) = 1

2

(
p2

x + p2
y

)
+

1

4
(x4 + y4) +

α

2
x2y2. (1)

It has been extensively studied both classically, semiclassically and quantum-mechanically
[16–20], as a smooth potential model exhibiting the transition from integrability to chaotic
behaviour. Here we summarize the main classical features relevant for the subsequent
semiclassical treatment. Since the Hamiltonian (1) is homogeneous, its classical dynamics at
different energies E can be related to each other by a simple scaling of coordinates, momenta
and time. All actions scale with energy E as E3/4 so that the semiclassical limit can be
unambiguously taken as E → ∞.

After scaling out the energy the parameter α in equation (1) solely determines the
dynamics. The system is integrable for α = 0, 1 and 3. For α = 9, it is almost completely
chaotic: we could not locate any stable periodic orbit with a period up to about four times
that of the shortest orbits. For values α > 9 the regular fraction of the phase space keeps
oscillating with a decreasing amplitude.
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Figure 1. Trace of the stability matrix M as a function of α, equation (1), for the primitive A orbit
(solid line) and the new orbits born at its bifurcations (dashed lines) at α = 6, 10, 15, 21, and 28.
Subscripts denote the Maslov indices σj (see section 3).

The QO in equation (1) possesses periodic straight-line librational orbits along both axes
which we label by A. They undergo stability oscillations under the variation of α. Infinite
cascades of new periodic orbits bifurcate from the A orbits and their repetitions. The motion
of the A libration can be given analytically in terms of Lamé functions [18, 19]. The trace of
its stability matrix M (see [11, 12] for its definition) as a function of α is known analytically
[21]:

Tr M(α) = 4 cos
(π

2

√
1 + 8α

)
+ 2. (2)

Isochronous pitchfork bifurcations of the A orbit (which are non-generic due to the discrete
symmetries of the system) take place when Tr M = +2, i.e., for

α = αn = 1
2n(n + 1), n = 0, 3, 4, 5, . . . . (3)

(For α1 = 1 and α2 = 3, where the system is integrable, the A orbit is member of a degenerate
family and does not bifurcate. See also [18, 19] for more details about the periodic orbits of
this system.)

In figure 1 we show Tr M(α) for the primitive A orbit and the new orbits born at its
bifurcations at αn with n = 3 to 7. These orbits are alternatively stable or unstable rotational
(Rσ ) and librational orbits (Lσ ) with a classical degeneracy of 2 due to the symmetries (cf
[18]). In our numerical case studies below, we shall focus on the bifurcation at α = α4 = 10
where the orbit L6 is born. Note that at each second bifurcation (n = 3, 5, . . .) a new stable
orbit (R5, L7, . . .) is born, so that stable orbits exist on either side of these bifurcations. At the
other bifurcations (n = 4, 6, . . .), on the other hand, the new orbits (L6, R8, . . .) are unstable,
and just before these bifurcations, the A orbit is also unstable. This explains the oscillating
regularity of the phase space and the fact that, even in the limit α → ∞, there always exist
regions with stable orbits [20]).

The potential in equation (1) is invariant under the symmetry operations that conform
the point group symmetry C4V , which has four one-dimensional irreducible representations
and one (doubly-degenerate) two-dimensional representation. Due to the C4V symmetry, the
full eigenvalue spectrum would not exhibit any universal statistics. For an appropriate study
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of the spectral statistics, each symmetry class must therefore be treated separately. We shall
study mainly the representation corresponding to eigenfunctions which are symmetric under
the operations x → −x, y → −y and x → y, which we call EES. This representation is
easier to handle semiclassically, because all its characters are equal to unity.

For the numerical calculation of the quantum mechanical eigenenergies we follow the
procedure outlined in [22]. We diagonalize the Hamiltonian using a basis of symmetry-
adapted linear combinations of harmonic oscillator states:

|nx, ny〉m = 1√
2
(|n1, n2〉 ± |n2, n1〉), (4)

where the sign and the parity of n1 and n2 depends on the representation. Since the independent
symmetry-reduced blocks of the Hamiltonian matrix in this basis are banded, we can obtain
up to ten thousand well-converged eigenvalues, allowing for significant statistics.

3. Semiclassical density of states for discrete symmetries

Periodic orbit theory yields the semiclassical spectral density as

g(E) = d̄(E) + δg(E), (5)

where the smooth part d̄(E) is given by the (extended) Thomas–Fermi model (cf chapter 4 in
[12]), and the oscillating contribution is given by a trace formula which, to leading order in
1/h̄, has the following form:

δg(E) = 1

h̄µ+1

∑
j

Aj (E) cos

[
Sj (E)

h̄
− π

2
σj

]
. (6)

The sum is over all periodic orbits j (which form families with degenerate actions in the
presence of continuous symmetries). Sj (E) = ∮

j
p · dq is the action integral along a periodic

orbit and σj a geometrical phase factor (usually called Maslov index). The amplitudes Aj(E)

and the power of h̄ in equation (6) depend on the presence of continuous symmetries. For
systems without continuous symmetries, where all orbits are isolated in phase space, one has
µ = 0, and the amplitudes Aj(E) were given by Gutzwiller [23] in terms of their stability
matrices Mj(E) and periods Tj (E) = dSj (E)/dE. When an isolated periodic orbit undergoes
a bifurcation at an energy E0, its amplitude in the Gutzwiller trace formula diverges and
uniform approximations must be developed [24] to obtain a finite Aj(E0); in this case one
finds 0 < µ � 1/2, the precise value of µ depending on the generic type of the bifurcation
(cf also [25]). For fully integrable systems, µ = f/2, where f is the degree of degeneracy
of the most degenerate orbit families; the amplitudes were derived by Strutinsky and Magner
[26] for specific cases and by Berry and Tabor [27] for general integrable systems (cf also
section 3.1). For non-integrable systems with continuous symmetries, further results were
obtained by Creagh and Littlejohn [28], who also derived a Berry–Tabor-like trace formula
for integrable systems.

In the presence of discrete symmetries it is necessary to define partial densities of states
corresponding to the subspectra of each irreducible representation of the symmetry group.
For systems with isolated orbits, the corresponding symmetry-reduced semiclassical trace
formulae have been derived in [29–31]; we shall discuss and use them in section 3.2.

For practical purposes, it is useful to coarse-grain the density of states by convolution
with a normalized Gaussian exp[−(E/γ )2]/(

√
πγ ). Hence, we replace the quantum density

of states d(E) = ∑
n δ(E − En) by the ‘coarse-grained’ density of states

dγ (E) = 1√
πγ

∑
n

exp

[
− (E − En)

2

γ 2

]
, (7)
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whereby the smoothing width γ defines the energy resolution at which one wishes to study
the spectrum. The correspondingly averaged semiclassical level density becomes, to leading
order in h̄ (see, e.g., [12]),

δgγ (E) = 1

h̄µ+1

∑
j

Aj (E) exp

[
−

(
γ Tj (E)

2h̄

)2
]

cos

[
Sj (E)

h̄
− π

2
σj

]
. (8)

Hence, long orbits are exponentially suppressed which avoids convergence problems for not
too small values of γ .

3.1. Integrable systems

For integrable systems with f degrees of freedom, it is useful to work with action-angle
variables (I, φ), with each set of actions I = {I1, . . . , If } defining a phase-space torus
[32]3. The Hamiltonian can be transformed to H(I) = E, and the frequencies dφ/dt =
ω = {ω1, . . . , ωf } on the torus I are given by ω(I) = ∇H(I). Assuming smooth boundaries,
the Einstein–Brillouin–Keller (EBK) quantization [33]

Ij (nj ) = h̄(nj + 1/2), nj = 0, 1, 2, . . . , j = 1, . . . , f, (9)

defines a set of f quantum numbers n = (n1, . . . , nf ). Upon inserting equation (9) into
E = H(I), the EBK spectrum reads

EEBK
n = EEBK

n1,...,nf
= H(I1(n1), . . . , If (nf )). (10)

Berry and Tabor [27] started from the density of states in terms of the EEBK
n and converted it,

by means of Poisson summation, into a semiclassical trace formula of the type of equation (6).
The EBK quantization of the integrable QO, equation (1), with α = 0 has been performed

in [19]; we quote here those results which are relevant for our present application. The EBK
spectrum becomes

EEBK
nx,ny

= 1

4

(
3πh̄

2K

) 4
3

[(
nx +

1

2

) 4
3

+

(
ny +

1

2

) 4
3

]
, (nx, ny = 0, 1, 2, . . .), (11)

where K = K(κ) is the complete elliptic integral of first kind with modulus κ = 1/
√

2. Since
the Hamiltonian (1) is separable for α = 0, we can write EEBK

nx,ny
= EEBK

nx
+ EEBK

ny
. The separate

one-dimensional densities of states,

gj (E) =
∞∑

nj =0

δ
(
E − EEBK

nj

)
, (j = x, y) (12)

which are identical due to the symmetry, become after Poisson summation

gj (E) = TA(E)

2πh̄

∞∑
kj =1

(−1)kj cos[kjSA(E)/h̄], (j = x, y) (13)

corresponding to the Gutzwiller trace formula for a one-dimensional system. Here

SA(E) = 4
3 K(4E)3/4 (14)

is the action of the primitive A orbit and TA(E) = dSA(E)/dE its period. The total density of
states of the full two-dimensional system can then be written as a convolution integral of the
one-dimensional densities:

g(E) =
∫ E

0
gx(E − E′)gy(E

′) dE′. (15)

3 The action-angle variables do not always exist globally in integrable systems; see, e.g., [32]. For the present QO,
however, they are global and given in [19].
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Figure 2. Upper panel: total density of states for α = 0 coarse-grained by a Gaussian with width
γ = 1. Lower panel: symmetry-reduced density of states for the representation EES, see the text.
Solid line: quantum result, dashed line: semiclassical result, equation (16).

The asymptotic evaluation [34] of this integral in the limit h̄ → 0 yields for the oscillating
part

δg(E) = 2

(
2K
πh̄

) 3
2

(4E)
1
8

∞∑
kx=1

∞∑
ky=1

(−1)kx+ky
kxky(

k4
x + k4

y

) 5
8

cos

[
1

h̄
Skxky

(E) − π

4

]

+
(4K)

3
4

(πh̄)
5
4

(4E)−
1
16

∞∑
k=1

(−1)k
1

k
3
4

cos

[
k

h̄
SA(E) − 3π

8

]
. (16)

The double sum in the first line above contains the contributions from the standard stationary-
phase evaluation of the integral. It corresponds exactly to the Berry–Tabor trace formula [27],
whereby the two numbers kx, ky label the rational tori corresponding to the simply degenerate
families of periodic orbits with two-dimensional motion. The actions of these rational tori are
given by

Skxky
(E) = SA(E)

(
k4
x + k4

y

)1/4
. (17)

The term in the second line of equation (16) arises from the boundaries of the integral
(15), corresponding to the A orbits which are one-dimensional librations with all energy in
either x (E′ = 0) or y direction (E′ = E). Note that the amplitude of this term involves a
prefactor h̄−5/4. This is due to the fact that the A orbit undergoes a pitchfork bifurcation at
α = 0 corresponding to n = 0 in equation (3). (The orbits L3 born at this bifurcation exist
only for α � 0.) In [19], identically the same result (16) was obtained, whereby the local
uniform approximation [24] for the contribution of the bifurcating A orbit was employed4.

In the upper panel of figure 2 we compare the semiclassical density of states, equation (16)
(dashed line), with the corresponding quantum-mechanical one (solid line), both coarse-
grained with a Gaussian average with width γ = 1. We find perfect agreement up to very high
energies.

We now calculate the symmetry-reduced densities of states by restricting ourselves to the
subspectra, EEBK

n , of a given irreducible representation. Hereby we can relate the parities of

4 The parameter a appearing in the corresponding normal form, in the notation of [25] was obtained analytically
in [19].
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the quantum numbers to the symmetries of the irreducible representations. Thus, we restrict
nx and ny to be even or odd, according to a given representation. For example, let us take
the one-dimensional irreducible representation EES. This corresponds to taking ny � nx with
nx, ny even. Then the partial density of states can be calculated as a convolution

δgEES(E) =
∫ E

0
gE

x (E − E′)gE
y (E′) dE′

of the one-dimensional densities gE
j (E) defined as in equation (12), except that only the terms

with even nj are included in the sum. The asymptotic evaluation of the convolution integral
leads to

δgEES(E) =
(

K
πh̄

) 3
2

(4E)
1
8

∞∑
kx ,ky=1

kxky(
k4
x + k4

y

)5/8
cos

[
1

2h̄
Skxky

(E) − π

2
(kx + ky) − π

4

]

+
1

2
3
4

(K)
3
4

(πh̄)
5
4

(4E)−
1
16

∞∑
k=1

1

k
3
4

cos

[
k

2h̄
SA(E) − π

2
k − 3π

8

]
. (18)

Again, the first term above corresponds to the Berry–Tabor result for the rational tori, and the
second term comes from the bifurcating A orbit.

In the lower panel of figure 2 we compare the semiclassical and quantum-mechanical
density of states, δgEES(E), coarse-grained with a Gaussian average with width γ = 1. Again
the agreement is nearly perfect.

3.2. Isolated orbits

The symmetry-reduced densities of states for isolated orbits have been derived in [29, 30] by
projecting the semiclassical Green function onto the irreducible representations and reducing
the classical dynamics to the fundamental domain which is the smallest part of the phase space
which tesselates the whole space under application of the allowed symmetry operations. After
this procedure one obtains the reduced density of states in the irreducible representation m,

δgm(E) = dm

h̄

∑
l

T l

|Kl|
∑

r

χm

(
gr

l

)
∣∣M r

l − Dl

∣∣ 1
2

cos

[
r

h̄
Sl(E) − π

2
σ rl

]
. (19)

Here dm is the dimension and χm(g) the character of the symmetry operator g in the irreducible
representation m. The bars in equation (19) indicate that actions, periods, stability matrices
and Maslov indices are calculated in the fundamental domain, while gr

l is the operator that
relates the rth repetition of the reduced orbit l with its original lifted into the whole phase
space. |Kl| is the order of the group Kl which leaves every point of the orbit l invariant.
By the definition of the fundamental domain, this is the identity for orbits that stay in the
interior of the fundamental domain, while there can exist more than one operation for orbits
that lie on the boundaries. The matrix Dl is block-diagonal in coordinates with blocks given
by d(gq)/dq with g ∈ K . This matrix is again the identity for interior orbits, but can be
different for boundary orbits.

It is usually easier to solve the equations of motion in the whole space than in the
fundamental domain, where one has hard-wall reflections. Given the classical quantities for
the total space, the task is then to find their reduced counterparts (marked with bars in (19)).
Take a Hamiltonian of the form H(p, r) = p2/2m + V (r) which is invariant under the point-
group symmetry G. Suppose that the subgroup H leaves the l orbit invariant (not pointwise),
then the l orbit can be divided into |H | copies related by symmetry [35]. There will be
|G|/|H | copies of the orbit in the full phase space (if we consider time reversal, then there are
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2|G|/|H | copies of orbits without time-reversal symmetry). Therefore the lifted orbit should
be equivalent to the (|H | = r)th repetition of the reduced orbit (or to the (|H |/2)th repetition
for time-asymmetric orbits, which become librating orbits in the fundamental domain, and
the (|H |/|K|)th repetition for boundary orbits). Hence, all the classical quantities should be
inter-related as

Sl(E) = rSl(E), Tl(E) = rT l(E), σl = rσ l, Ml = M
r

l , (20)

since they are invariant under point transformations. The only difficulty remains to find out

which of the roots of Ml must be taken. E.g., for |H | = 2 we have Ml = M
2
l . Thus, if the

eigenvalues of Ml are e±ul , those of Ml can be ± e±ul/2. On the other hand, we know that for
two-dimensional Hamiltonian systems, hyperbolic orbits always have even Maslov indices,
while elliptic and inverse-hyperbolic orbits always have odd Maslov indices [36]. We have
observed that this rule can be reversed in the fundamental domain.

This is illustrated in figure 3 for the case of a single reflection symmetry with respect to
the x axis. Then the fundamental domain is the upper plane (y � 0). We have calculated the
Maslov index σ using the method of Creagh et al [37] (as explained in [12], appendix D) and
verified that it is, indeed, either the same as for the lifted orbit for orbits without this symmetry,
or half of it for orbits with reflection symmetry. However, the sign of the eigenvalues did
not follow Sugita’s rule [36]. This rule can, however, be applied to σ − mod(R, 2), where
R indicates the number of hard-wall reflections at the boundaries of the fundamental domain.
Thus, if this number is odd, the rule is reversed.

We have calculated the reduced density of states (19) for the representation EES in the
QO at α = 9. The result is shown in figure 4 for Gaussian smoothing with width γ = 4. A
considerable agreement between the semiclassical (dotted line) and the quantum-mechanical
result (solid line) is achieved.

4. Spectral rigidity

To study the effect of pitchfork bifurcations on the spectral statistics we consider the spectral
rigidity or stiffness, 	 [38]. It is defined as the local average of the mean-square deviation of
the staircase function N(E) from its best-fit straight line over an energy range corresponding
to L states with mean level spacing d̄:

	(L) =
〈

min
A,B

d̄

L

∫ L/2d̄

−L/2d̄

dε[N(E + ε) − A − Bε]2

〉
. (21)

The quantity 	(L) measures spectral correlations over energy distances of order L. For an
uncorrelated Poisson spectrum the universal prediction is

	Poisson(L) = L/15, (22)

while for a chaotic system it is approximately given by

	RMT(L) = β

2π2
log L − D, (23)

where D is a constant, β = 1 for systems without time reversal symmetry (GUE statistics) and
β = 2 for systems with time reversal symmetry (GOE statistics). This universal behaviour
has been observed up to correlation lengths L < Lmax = 2πh̄d̄/Tmin, where Tmin is the period
of the shortest orbit. In figure 5 we show the numerical results for the quartic oscillator
in the integrable and almost chaotic regime, compared with the corresponding predictions,
equations (22), (23). The L range, in which the numerical data coincide with the universal
predictions, increases with increasing energy, i.e., by approaching the semiclassical limit.
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Figure 3. Calculation of Maslov indices for some reduced orbits of the QO at α = 9, considering
only the reflexion symmetry at the x axis. Left panels: reduced orbits in (x, y) plane. Right panels:
evaluation of the Maslov index σ which corresponds to the winding number of the complex number
C(t) over one period (cf [37]). Top panels: librational orbit B2 along the diagonal. Here the length
of the reduced orbit is the same as that of the lifted orbit, and their Maslov indices are equal. Centre
panels: orbit R4. Here the reduced orbit is half of the lifted orbit and its Maslov index is σ = 2
(i.e., half of the total σ ) but Tr M is negative in spite of the even Maslov index. Bottom panels:
orbit A6. The reduced orbit is again half of the total orbit, and so is the Maslov index. But Tr M is
positive in spite of the odd Maslov index.

For a mixed system it was conjectured that the statistics will be a superposition of Poisson
and random matrix contributions [39, 40], parameterized as

	(L) ≈ 	Poisson ((1 − q)L) + 	RMT (qL), (24)

where q is the irregularity fraction of the system (i.e., the fraction of the phase space
corresponding to the chaotic sea). Since both statistics are monotonously increasing functions,
we expect that the more regular the system is, the larger is the rigidity.
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Figure 4. Reduced density of states for the representation EES in the QO at α = 9 after Gaussian
averaging with width γ = 4. The solid line shows the quantum result and the dotted line the
semiclassical result using equation (19).

 0

 2

 4

 6

 20  60  100  140  180

Integrable QO Poisson

∆
(L

)

L
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Figure 5. Rigidity for α = 0 (integrable case) and α = 9 (almost chaotic case). With increasing
(unfolded) energy Ẽ the numerical data converge to the universal Poisson (left panel) and random
matrix predictions (right panel) marked as full lines.

4.1. Semiclassical theory for the rigidity

The semiclassical theory for the rigidity was developed in [7], for the two limiting cases of
complete chaoticity and full regularity (integrability). The procedure is the following: by
energy integration of the density of states, equation (6), one obtains an expression for the
number of states. By inserting this expression into the definition of the rigidity one finds

	(L) = 1

2h̄2µ

〈∑
j

∑
k

AjAk

TjTk

cos

[
1

h̄
(Sj − Sk) +

π

2
(σj − σk)

]
G(yj , yk)

〉
, (25)

where Tj = dSj/dE are the periods,

yj = LTj

2h̄d̄
= π

L

Lmax

Tj

Tmin
, (26)

and

G(x, y) = F(x − y) − F(x)F (y) − 3F ′(x)F ′(y), (27)

F(x) = 1

x
sin x = j0(x). (28)

The main contributions come from pairs of orbits whose action difference is smaller than h̄,
so that yj can be chosen to be equal to yk in the argument of G:

	(L) = 1

2h̄2µ

〈∑
j

∑
k

AjAk

TjTk

exp

[
i

h̄
(Sj − Sk) +

π

2
(σj − σk)

]
g(ȳj,k)

〉
, (29)
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Figure 6. Window function g(y), see the text.

where ȳjk = 1
2 (yj + yk) and g(x) = G(x, x). The function g(y) (see figure 6) selects the

orbits that contribute to the double sum. If L � Lmax then g(y) is almost unity only for
long orbits, while for L > Lmax the function is almost unity for all y, and the most important
contributions to 	(L) come from short orbits due to the factor 1/T 2. Since we are interested
in studying the effects of a bifurcation of one of the shortest orbits, we are going to concentrate
on the saturation behaviour, which corresponds basically to the first moment of the staircase
function.

The rigidity can be written in terms of the spectral form factor K(τ) (the Fourier transform
of the autocorrelation function) as

	(L) = 1

2π2

∫
K(τ)

τ 2
g(πLτ) dτ, (30)

with τ = T/2πh̄d̄ and K(τ) = 〈
1
d̄

∫ ∞
−∞〈d(E +ω/2)d(E −ω/2)〉 e−2π iωτ d̄ dω

〉
	τ

. A local time
average 	τ has to be performed in order to obtain a self-averaging form factor.

The corresponding semiclassical expression for the form factor, analogous to
equation (29), is

K(τ,E) = 1

h̄2µ

〈∑
j,k

AjAk

T 2
H

cos

[
1

h̄
(Sj − Sk) +

π

2
(σj − σk)

]
δ	τ

(
τ − T̄jk

TH

)〉
	E

, (31)

where T̄jk = 1
2 (Tj + Tk). The width of the delta-function is due to the time average 	τ .

As expressed in equations (29) and (31), the rigidity and the spectral form factor are
determined by a double sum over pairs of periodic orbits. The semiclassical limit h̄ → 0
means that the typical classical actions of these paths are very large compared with h̄, so
that the energy average will strongly suppress the contributions of most pairs of orbits. The
first approximation is to consider that only orbits paired with themselves (j = i) or with
their time-reserved partners (j = ī) give a contribution, which is known as the ‘diagonal
approximation’ [7].

For the QO at α = 0, the tori amplitudes Akx,ky are given by

Akx,ky =
(

K
π

)3/2

(4E)1/8 kxky

(kx + ky)5/8
(32)

for the irreducible representation EES. For integrable systems the contribution of the non-
diagonal terms j 
= k in the sum (25) will vanish after averaging owing to destructive
interference. For this system, due to the degeneracy in the actions, the orbits that contribute
to the double sum are those that satisfy n4

x + n4
y = n′4

x + n′4
y . Inserting the amplitudes for the
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Ẽ = 1000

Figure 7. Semiclassical (dashed lines) and quantum results (solid lines) for the spectral rigidity
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Figure 8. Saturation value 	∞ plotted versus unfolded energy Ẽ. The dots mark the quantum
results. Left panel: integrable case (α = 0); the solid line shows the semiclassical prediction.
Right panel: almost chaotic case (α = 9). Here the solid line represents the GOE prediction.

tori and summing only over terms with the same actions we have

	(L) = (4E)3/4

24π3h̄K

∞∑
kx ,ky=1

kxky

l7
k

g
(
ȳkx ,ky

) ∞∑
nx,ny=1

nxnyδlk−ln , (33)

where lk = (
k4
x + k4

y

)1/4
, ln = (

n4
x + n4

y

)1/4
, and δ is the Kronecker delta.

With this expression, we can reproduce very well the statistics semiclassically, as is shown
in figure 7.

We have neglected here the contribution of the A orbit which undergoes a pitchfork
bifurcation. We have checked that its contribution is negligible, since its amplitude in the
PO expansion goes like h̄−5/4 (a power one quarter larger than an isolated orbit) compared
with that (h̄−3/2) of the tori. For the saturation we can take g

(
ykx,ky

) = 1. Then the energy
dependence of the saturation value 	∞ goes like E3/4, as seen from equation (33).

In the left panel of figure 8 we depict the saturation value obtained from the quantum
spectrum (dots), which is well reproduced by the semiclassical prediction (solid line). For the
chaotic case, RMT gives a saturation value 	∞ that behaves as log(1/h̄) which is obtained by
replacing the form factor by its GOE prediction in equation (30). Though the exact saturation
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Figure 9. Left panel: spectral rigidity for α = 9 (crosses), α = α4 = 10 (filled squares), α = 10.5
(circles), and α = 11 (triangles) for Ẽ = 4000. Right panel: saturation value 	∞ versus Ẽ before
and after the bifurcation at α4 = 10. Although the phase space is barely affected, the saturation at
α = 10.5 is much larger than the saturation at α = 11.

value is not universal, since it depends on the lower integration limit τmin, its h̄ dependence
is. In the right panel of figure 8 we compare the quantum result with the GOE prediction
evaluated for our value of Tmin for α = 9.

4.2. Bifurcation effects in the rigidity

It has been discussed in [13] that additional contributions to the long-range spectral correlations
may arise from bifurcations of periodic orbits, and that this effect can be reproduced
semiclassically. The authors of [13] investigated the cat map at a tangent bifurcation, and
found that the number variance of the counting function shows a ‘lift off’ reaching a much
higher value than in the normal chaotic situation. We report here similar findings for the
rigidity of the QO Hamiltonian for values of α near the pitchfork bifurcations of the A orbit
at αn. Moreover, we find that the increase of the saturation value 	∞ becomes even larger
slightly above the bifurcations. This is illustrated in figure 9. In the left panel we show the
rigidity 	(L) for four values of α around α = α4 = 10 where such a bifurcation occurs. The
rigidity at α4 = 10 exhibits a slightly larger saturation than at α = 9 (‘lift off’). However,
the increase is even much more noticeable at α = 10.5. Then the saturation goes down again
for α = 11, even though the system is more regular than at α = 10.5.5

The energy dependence of 	∞ is shown in the right panel of figure 9. We see that this
effect exists over a large region of energies. As depicted in figure 11 the phase space looks
completely chaotic at the bifurcation at α = 10; without knowledge of the bifurcation one
would expect an almost universal behaviour. Above the bifurcation, a tiny regular island is
seen at the centre, which arises from orbit A7 that became stable. The island is slightly larger
at α = 11 than at α = 10.5 (see figure 11).

Equivalently, in figure 10 we show the effect in the spectral form factor. In the left panel
we show K(τ) at α = 9, 10 and 11. The results are consistent with the GOE prediction for
almost all times, but we see a very large peak at a time that corresponds to the period of the
libration orbit, τA. This is consistent with the results of [13]. However, the enhancement is
even more noticeable at α = 10.5 (right panel).

The exact calculation of the semiclassical rigidity for the QO in the chaotic regime is
numerically impossible, since this would require an infinite number of periodic orbits, and

5 To verify this, we calculated the chaoticity fraction q by fitting the nearest-neighbour spacing distribution to the
interpolation formula given in [39].
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there is no analytical way to calculate them. To reproduce the quantum result semiclassically,
we calculate the coarse-grained reduced density of states, defined analogously to equation (8)
by

δgm
γ (E) = dm

h̄

∑
l

T l

|Kl| e−(γ T l/2)2
∑

r

χm

(
gr

l

)
∣∣M r

l − Dl

∣∣ 1
2

cos

[
r

h̄
Sl(E) − π

2
σ rl

]
. (34)

The longer orbits will be exponentially suppressed assuring convergence, but, at the same
time, affecting the universality. However, for the study of the saturation properties of 	(L)

as a probe for bifurcation effects, the information of the shorter orbits should be sufficient.
Consistently we also coarse-grain the quantum stair-case function, defining

Nγ (E) = 1

2

∑
n

[
1 − erf

(
En − E

γ

)]
. (35)

Inserting Nγ (E) into equation (21), we obtain a ‘smoothed’ rigidity 	γ of the coarse-grained
density of states. We find that even for relatively large values of γ , the bifurcation effects
described above are still clearly visible, as shown in figure 12.

We are now equipped to calculate the saturation property of the smooth rigidity 	γ (L)

semiclassically, taking into account the bifurcation of the A orbit at α4 = 10. Its contribution to
the total density of states, together with that of the L6 orbits born at the bifurcation, to the total
density of states is given in the ‘global’ uniform approximation of [25] (with σ = +1, a < 0,
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σ1 = −1 and ν = σA6,r = 6r for the present case). It reads

δgun
A+L(E) = Re

1

πh̄

∣∣∣∣π	S

2h̄

∣∣∣∣
1/2

exp
( i

h̄
S − i3rπ − i

π

4

)

×
{
A

[
σ2J1/4

( |	S|
h̄

)
e−i π

8 + J−1/4

( |	S|
h̄

)
ei π

8

]

+ 	A

[
J3/4

( |	S|
h̄

)
e−3i π

8 + σ2J−3/4

( |	S|
h̄

)
e3i π

8

]}
. (36)

Here 	A = AL/2 −AA/
√

2, A = AL/2 + AA/
√

2, S = (SL + SA)/2 and 	S = (SL −SA)/2,
where Aj(E) and Sj (E) are the Gutzwiller amplitudes and actions of the isolated A and
L orbits, respectively, away from the bifurcation, r is their repetition number, and σ2 =
sign(α − α4). At the bifurcation (α = α4 = 10), the local uniform approximation becomes

δgloc
A+L(E) = TA�( 1

4 )

2π
√

2πh̄5/4|a|1/4r3/4
cos

[
SA

h̄
− 3rπ +

π

8

]
. (37)

Here TA(E) is the period of the primitive A orbit, and a is a normal form parameter which
we determined numerically from the local expansion given in equation (41) below (cf also
[19, 25]).

In this way we can reproduce the quantum mechanical results near the bifurcation
semiclassically, as demonstrated in figure 13. Further analysis showed that amplitudes and
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actions of most of the orbits do barely change, and the higher saturation for the smooth rigidity
was mainly caused by the bifurcation.

Considering the rigidity without smoothing, we now assume that the contribution of the
long orbits corresponds to and can be replaced by the universal RMT prediction, so that the
differences in the saturations arise basically from the A and L orbits. Hence, we approximate
the saturation value of 	 by

	∞(E) � 	GOE
∞ + 	A,L

∞

� 	GOE +
1

2

〈 ∑
j,k=A,L

AjAk

TjTk

cos

(
Sj − Sk

h̄

)〉
. (38)

At the bifurcation, the second term corresponds to the diagonal contribution of (37), so that

	A,L
∞ = �2(1/4)

8π3|a|1/2h̄1/2 , (39)

and 	∞ behaves like

	∞ ∝ log(1/h̄) +
1

h̄1/2 . (40)

In the neighbourhood of the bifurcation, i.e., when the action difference |	S| is smaller than
h̄, we can expand the actions and amplitudes around α = α4 (cf [25]):

	S = SA − SL

2
= ε2

4a
+ O(ε3), (41)

AA = TA√
2ε

, AL = TA√
ε

[1 + O(ε)] , (42)

where ε = c(α − α4). Up to first order in ε this yields

δgun
A+L(E) ≈ TA

π
√

2πh̄
Re eiS̄/h̄−i3kπ−iπ/4

[
σ2�(3/4)

|ah̄|3/4
ε e−iπ/8 +

�(1/4)

2|ah̄|1/4
eiπ/8

]
. (43)

Inserting this into the saturation value of the rigidity we obtain

	A,L
∞ ≈ �2(1/4)

8π3|a|1/2h̄1/2 + ε
1

2π2|a|h̄ + ε2 �2(3/4)

2π3|a|3/2h̄3/2 . (44)

Equivalent results are obtained for the form factor considering only the contributions of the
orbits involved in the bifurcation.

In figure 14 we show the quantum results for 	∞ versus energy Ẽ and for the form
factor K(τ) near τA, for the three values α = 9, 10 and 10.5 (as crosses, squares and circles,
respectively). The solid line gives the universal GOE prediction, i.e., the first term in (40). It
agrees well with the quantum result at α = 9, in line with the near chaoticity of the system
below the bifurcation. The dashed and dotted lines show the prediction (44), which includes
the bifurcating orbits A and L in the uniform approximation, and coincide well with the
quantum results at and above the bifurcation. At the bifurcation (α = α4 = 10) where ε = 0,
equation (44) is consistent with the diagonal approximation for the bifurcating orbits and thus
the same as that used in [13].

Figure 14 moreover shows that slightly above the bifurcation, i.e. at α = 10.5, the
additional terms in equation (44), playing a role for ε 
= 0, give a noticeable contribution, as
seen by the dashed line. The main contribution comes from the term linear in ε which is the
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Figure 14. Left: saturation as a function of the energy. Right: form factor near τA. Crosses,
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non-diagonal contribution of the pairs of separate orbits A and L above the bifurcation. To see
this, we evaluate their non-diagonal contribution in the Gutzwiller approximation for isolated
orbits, which would become

	
A.L(non-diag)

∞(Gutz) = 2
ALAA

π2T 2
A

〈
sin

(
	S

h̄

)〉
≈

√
2

π2ε

	S

h̄
= ε

2
√

2π2|a|h̄ . (45)

(Although the diagonal contribution diverges at the bifurcation, the non-diagonal contribution
stays finite there.) The additional factor 1/

√
2, compared to the last term in equation (44),

is due to the fact that the Gutzwiller approximation is not yet valid in this vicinity of the
bifurcation (in particular, the difference in Maslov indices is different from the value 1 reached
only far from the bifurcation where 	S 
 h̄ and hence ε 
 1).

We see therefore that the non-diagonal contribution of the bifurcating orbits to the
saturation value 	∞ is non-negligible in a neighbourhood above the bifurcation. Note that
the value of 	∞ is slightly enhanced also by the fact that the particular combination of Bessel
functions in the uniform approximation (36) can be expressed by an Airy function (and its
derivative, cf [25]), which has its maximum slightly above the bifurcation. This effect is,
however, not sufficient to explain the enhancement of 	∞ found in our results, so that we can
argue that the non-diagonal contribution is substantial.

It is important to mention that this non-diagonal contribution exists as long as h̄ remains
finite. In the strict semiclassical limit h̄ → 0, the global uniform approximation (36) merges
into the Gutzwiller trace formula for non-zero 	S, and sin(	S/h̄) oscillates very fast, so that
after the coarse-graining, the non-diagonal contribution will tend to zero. This is expected,
since in the semiclassical approximation for mixed systems (equation (24)), periodic orbits
with different stability give rise to independent statistics.

5. Conclusions

In this case study we worked out for the quartic oscillator how (pitchfork) bifurcations affect
the density of states and thereby further measures of spectral correlations. This requires,
at a first stage, detailed knowledge about the classical bifurcation scenario in that system.
At a second stage, we performed a comprehensive semiclassical calculation for the density
of states invoking uniform approximations for the bifurcating orbits involved. All features
of the coarse-grained quantum density of states are adequately, and to high precision (mean
level spacing), semiclassically reproduced, which is not evident in such a system with mixed
phase space dynamics. Our semiclassical evaluation of the spectral rigidity close to the
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bifurcation shows strong deviations from the RMT behaviour, even though the phase space
is predominantly chaotic and the bifurcation-affected phase space region appears negligible.
This confirms that spectral statistics is rather susceptible with respect to bifurcation effects.
Moreover we could unreveal the role of orbit pairs born at the bifurcation which prevail with
near-degenerate actions for larger control parameter regimes and strongly affect the spectral
statistics. Such orbit pairs are obviously classically correlated and require a treatment beyond
the diagonal approximation.

This analysis moreover implies that in a comprehensive semiclassical approach to spectral
correlations in mixed systems, which still remains as a challenge, off-diagonal contributions
in the occurring multiple sums over periodic orbits should be considered, analogously to the
purely hyperbolic case.

Further open questions not answered in the present work include a corresponding analysis
of how eigenstates are affected at a bifurcation. Finally, studies of bifurcation signatures in
other observables such as quantum transport are still rare [15] and remain to be explored.
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